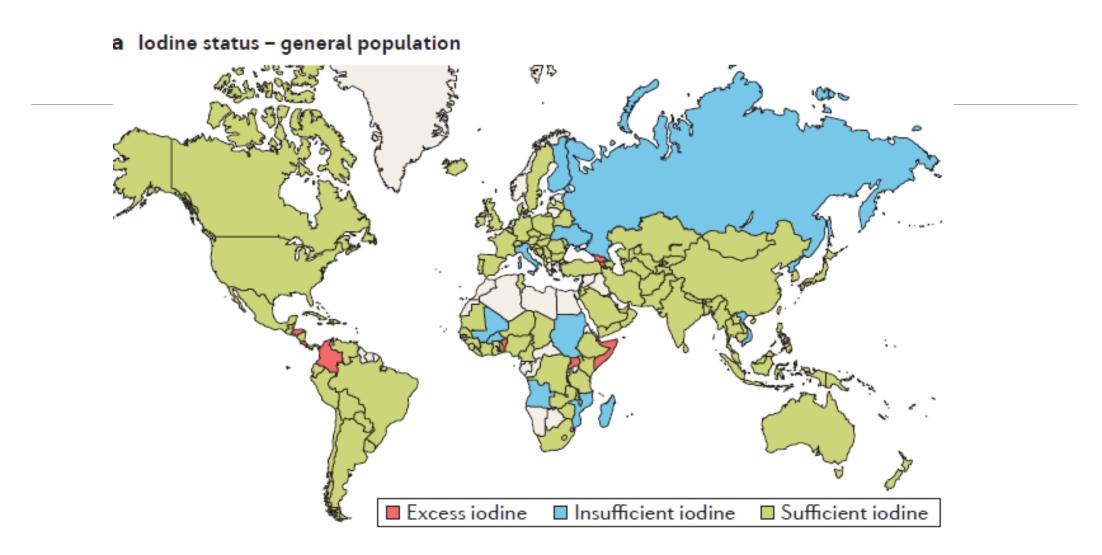


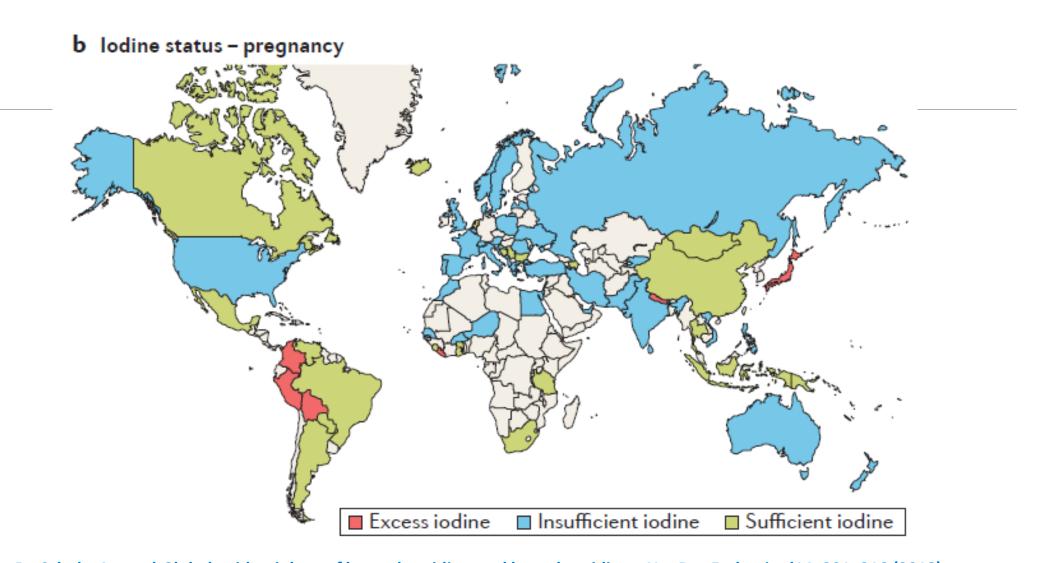
Epidemiology of Thyroid Disorders

ZAHRA KASHI PROFESSOR OF ENDOCRINOLOGY 2022

☐ Thyroid hormones act on almost all nucleated cells and are essential for normal growth and energy metabolism
□ <u>Thyroid dysfunction</u> is common, readily identifiable and easily treatable, but if undiagnosed or untreated, it can have profound adverse effects
□ lodine nutrition remains a key determinant of thyroid function worldwide
□In iodine-replete populations, thyroid dysfunction is most commonly due to thyroid autoimmunity


The prevalence and incidence of thyroid dysfunction are difficult to compare across countries owing to differences in:

- ☐ diagnostic thresholds
- ☐ assay sensitivities
- population selection
- □ *iodine nutrition*


Risk factors for developing hypothyroidism and hyperthyroidism

Risk factor	Hypothyroidism	Hyperthyroidism	Comment
Female sex	+	+	Sex hormones and the skewed inactivation of the X chromosome are suspected to be triggers for hypothyroidism and hyperthyroidism ²⁶
lodine deficiency	+	+	Severe iodine deficiency can cause hypothyroidism and hyperthyroidism ¹⁷⁰
lodine excess	+	+	Excess iodine status can trigger hyperthyroidism, typically in elderly individuals with long-standing thyroid nodules and hyperthyroidism ¹⁷⁰
Transition from iodine deficiency to sufficiency	+	+	Transition from iodine deficiency to sufficiency was associated with an increase in thyroperoxidase antibodies; one study reported an increase from 14.3% to 23.8% ¹⁴⁵ . As a result, the incidence of overt hypothyroidism increased almost 20% from 38.3 per 100,000 per year at baseline to 47.2 per 100,000 per year ¹⁴⁶
Other autoimmune conditions	+	+	One study reported that another autoimmune disease was present in almost 10% of patients with <u>Graves disease</u> and in 15% of patients with <u>Hashimoto's</u> thyroiditis, with theumatoid arthritis being the most common ¹⁹
Genetic risk factors	n/a	NA	Both Graves disease and Hashimoto thyroiditis have genetic predispositions. Genome-wide association data have identified regions associated with thyroperoxidase antibody positivity ¹⁷¹ and thyroid disease ^{171,172} . Whole-genome sequencing might reveal novel insights ¹⁶⁰
Smoking		+	Current smoking increases the odds of Graves hyperthyroidism almost twofold and increases the risk of Graves ophthalmopathy almost eightfold ¹⁷³ . Smokers also have a slower response during antithyroid drug treatment ¹⁷⁴ . Smoking might protect against hypothyroidism as smokers have a 30–45% reduction in the odds of being thyroperoxidase antibody positive ^{175,176} . Current smokers had a 50% lower prevalence of subclinical hypothyroidism and a 40% lower prevalence of overt hypothyroidism than non-smokers ¹⁷⁷

Risk factor	Hypothyroidism	Hyperthyroidism	Comment
Selenium deficiency	+	+	One study reported that patients with newly diagnosed Graves disease and hypothyroidism had lower selenium levels than the normal population. This finding was most pronounced in patients with Graves disease ¹⁸
Drugs	+	+	Examples of dru gs t hat can cause hyperthyroidism and hypothyroidism include amiodarone ² Lithium ²² and FN-γ
Infections	NA	NA	Infectious agents have been associated with both autoimmune diseases and Graves disease ¹⁷⁹ . The most well studied is <i>Yersinia enterocolitica</i> , although etroviruses have also been identified as a possible cause ^{16,179}
Syndromic conditions	+	NA	Almost 25% of patients in a large registry of patients with Down syndrome had thyroid disease, the most common being primary hypothyroidism ²⁰ . The prevalence of hypothyroidism in Turner syndrome is approximately 13% ¹⁷² , but the incidence increases substantially by the third decade of life

Taylor, P., Albrecht, D., Scholz, A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14, 301–316 (2018).

Taylor, P., Albrecht, D., Scholz, A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14, 301–316 (2018).

Hypothyroidism

Hypothyroidism	is approximately ter	times more	prevalent in	women t	han
men					

□ lodine deficiency and autoimmune disease (known as Hashimoto thyroiditis) account for the vast majority of cases of primary hypothyroidism

Isfahan Thyroid Cohort Study (ITCS)

- ☐ This cohort is located in Isfahan, Iran
- ☐ The study had two phases (2006 and 2011) and its third stage is planned for 2020–2021
- ☐ The first phase was initiated in 2006 with 2523 participants (1275 males, 1248 females)

In iodine-sufficient countries, the prevalence of overt hypothyroidism ranges from 1% to 2%, rising to 7% in individuals aged between 85 and 89 years

Subclinical hypothyroidism: 4 to 10 %

- ☐ The prevalence of overt hypothyroidism in the general population ranges
- **♦ in Europe from between 0.2% and 5.3%**
- ❖ in the USA 0.3% and 3.7%

IRAN

Tehran Thyroid Study & Isfahan Thyroid Cohort Study (ITCS)

overt hypothyroidism: 2.4% & 2.8%

subclinical hypothyroidism:5% & 5.8%

- Nat Rev Endocrinol 14, 301–316 (2018).
- Iranian Journal of Endocrinology and Metabolism. 2016; 18 (3):165-172
- Arch Iran Med. 2021 Nov 1;24(11):788-795.

Hyperthyroidism

□ The prevalence of overt hyperthyroidism ranges from 0.2% to 1.3% in iodine-sufficient parts of the world

IRAN

■ The prevalence of hyperthyroidism :

Overt hyperthyroidism: 0.69% & 0.8%

□subclinical hyperthyroidism:1.52% & 0.99

- Nat Rev Endocrinol 14, 301-316 (2018).
- Journal of Diabetes and Metabolic Disorders. 2018 Dec;17(2):345-355
- Arch Iran Med. 2021 Nov 1;24(11):788-795.

Pregnancy

Hypothyroidism in pregnancy

□ In iodine-sufficient areas, the prevalence of hypothyroidism in pregnancy is ~2%83

□IRAN

The prevalence of hypothyroidism in Iranian pregnant women

- ❖clinical hypothyroidism : <u>1.35%</u>
- **♦** subclinical hypothyroidism: 11.90%

- Nat Rev Endocrinol 14, 301–316 (2018)
- BMC Pregnancy Childbirth 20, 405 (2020)

Hyperthyroidism in pregnancy

Thyrotoxicosis in pregnancy:

- **♦•overt thyrotoxicosis :0.2%**
- subclinical thyrotoxicosis: 2.5%

IRAN

The prevalence of hyperthyroidism, in Iranian pregnant women is 3.31%

- **❖clinical hyperthyroidism :1.06**%
- **♦** subclinical hyperthyroidism : 2.56%

- Nat Rev Endocrinol 14, 301–316 (2018)
- BMC Pregnancy Childbirth 20, 405 (2020)

Thyroid nodule

And

AntiTPO Ab positive

Thyroid nodule in general population: 6.4% in women ,1.5 % in men

Autopsy surveys: 37-57%

IRAN

□Palpable thyroid nodules were observed in 2.5% (3.6% women,1.3% men)

□the prevalence of thyroid nodules that were undetectable by physical examination, was 13.2%

Anti Tpo Ab positive in general population in world: 5% of adult and 15 % older women

IRAN

12.8%

higher prevalence among women than in men: 16.0 vs. 8.5%

PLoS ONE 12(1): e0169283

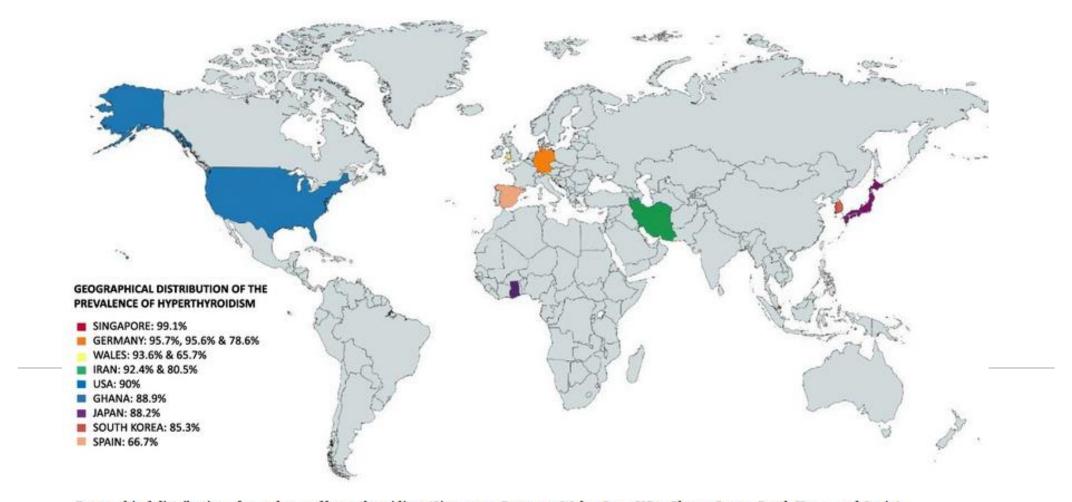
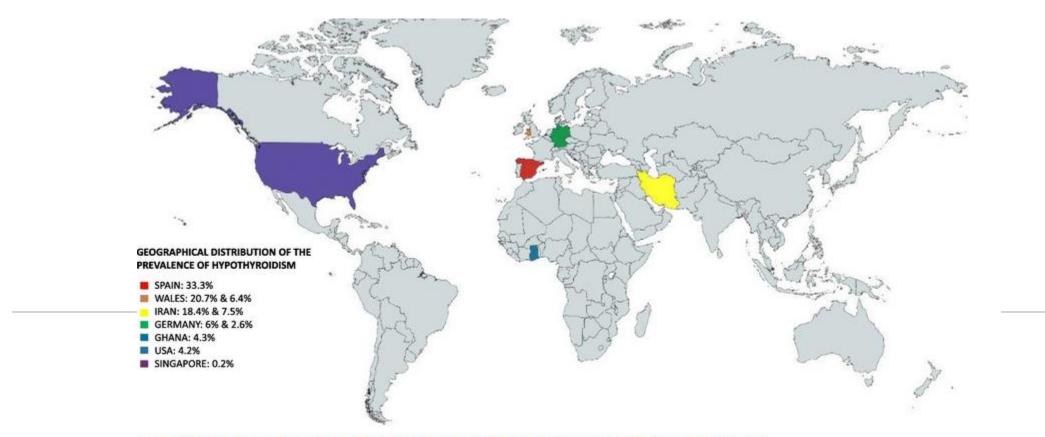

Thyroid Eye disease

Table 2 Characteristics of included studies

Author	Study period	Country	Number of patients with TED	Prevalence (%) hyperthyroidism in TED	Prevalence (%) hypothyroidism in TED	Prevalence (%) euthyroidism in TED
Ackuaku-Dogbe et al. [24]	2014–2016	Ghana	117	104 (88.9)	5 (4.3)	8 (6.8)
Expósito et al. [25]	2007-2011	Spain	18	12 (66.7)	6 (33.3)	_
Bartley et al. [14]	1976-1990	USA	120	108 (90)	5 (4.2)	7 (5.8)
Eckstein et al. [15]	2000	Germany	182	143 (78.6)	11 (6)	28 (15.4)
Jang et al. [26]	2008-2010	South Korea	163	139 (85.3)	_	24 (14.7)
Kashkouli et al. [22]	2003-2006	Iran	303	280 (92.4)	23 (7.5)	_
Khoo et al. [27]	1996-1999	Singapore	1020	1011 (99.1)	2 (0.2)	7 (0.7)
McKeag et al. [28]	2006-2007	Wales	47	44 (93.6)	3 (6.4)	_
Medghalchi et al. [29]	2012-2014	Iran	103	83 (80.5)	19 (18.4)	1 (0.9)
Mukasa et al. [30]	2010-2010	Japan	238	210 (88.2)	-	28 (11.8)
Ponto et al. [31]	1999-2012	Germany	610	584 (95.7)	_	_
Ponto et al. [32]	2005-2012	Germany	461	441 (95.6)	12 (2.6)	8 (1.7)
Cozma et al. [33]	1997–2005	Wales	140	92 (65.7)	29 (20.7)	19 (13.6)

Thyroid eye disease and hyperthyroidism

The global prevalence **86.2%**

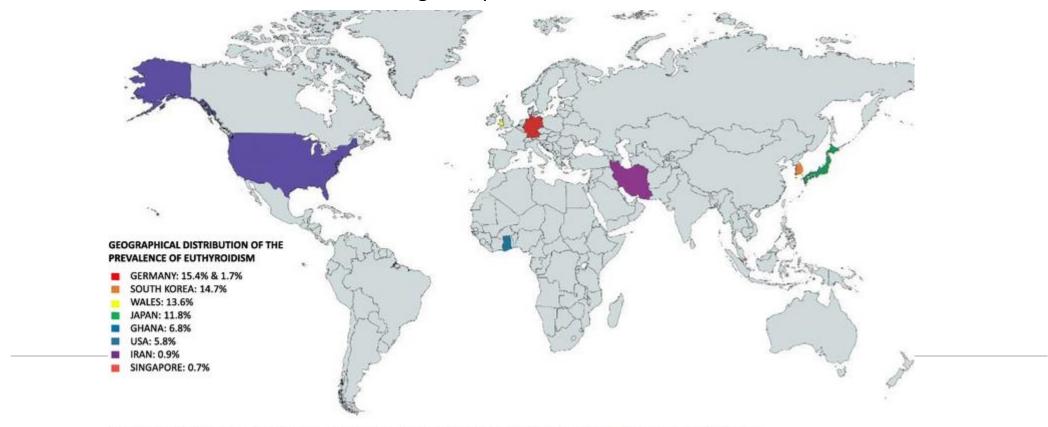


Geographical distribution of prevalence of hyperthyroidism (Singapore, Germany, Wales, Iran, USA, Ghana, Japan, South Korea, and Spain)

Muñoz-Ortiz, J., Sierra-Cote, M.C., Zapata-Bravo, E. et al. Prevalence of hyperthyroidism, hypothyroidism, and euthyroidism in thyroid eye disease: a systematic review of the literature. Syst Rev 9, 201 (2020).

Thyroid eye disease and hypothyroidism

The global prevalence **10.6%**



Geographical distribution of prevalence of hypothyroidism (Spain, Wales, Iran, Germany, Ghana, USA, and Singapore)

Muñoz-Ortiz, J., Sierra-Cote, M.C., Zapata-Bravo, E. et al. Prevalence of hyperthyroidism, hypothyroidism, and euthyroidism in thyroid eye disease: a systematic review of the literature. Syst Rev 9, 201 (2020).

Thyroid eye disease and Euthyroidism

The global prevalence 7.9%

Geographical distribution of euthyroid prevalence (Germany, South Korea, Wales, Japan, Ghana, USA, Iran, and Singapore)

Muñoz-Ortiz, J., Sierra-Cote, M.C., Zapata-Bravo, E. et al. Prevalence of hyperthyroidism, hypothyroidism, and euthyroidism in thyroid eye disease: a systematic review of the literature. Syst Rev 9, 201 (2020).

عناوین امروز

ارزیابی و درمان بیماران مبتلا به کم کاری تیروئید	خانم دکتر شیدایی- فوق تخصص غدد
نحوه برخورد با ندول تیروئید	خانم دکتر سعیدیان- فوق تخصص غدد
نحوه برخورد با انواع تيروئيديت	خانم دکتر اخی'- فوق تخصص غدد
اختلالات تیروئید در بارداری	خانم دکتر موحدی راد- فوق تخصص غدد
ارزیابی و درمان بیماران مبتلا به پرکاری تیروئید	خانم دکتر بهار - فوق تخصص غدد
درگیری چشمی در بیماران مبتلا به اختلالات تیروئید	آقای دکتر جعفری- فلوشیب جراحی پلاستیک و ترمیمی چشم

